Descripteurs
> 1305 mathématiques > mathématique > calcul numérique > racine : mathématique
racine : mathématiqueSynonyme(s)racine carrée racine cubique |
Documents disponibles dans cette catégorie (1)
Ajouter le résultat dans votre panier Affiner la recherche
Processus itératifs et récurrence / Archimède (2020) in Tangente. Hors-série (Paris), 076 (11/2020)
[article]
Titre : Processus itératifs et récurrence Type de document : texte imprimé Editeur : Archimède, 2020 Article : p.13-30 Note générale : Bibliographie, schémas. Langues : Français (fre)
in Tangente. Hors-série (Paris) > 076 (11/2020)Descripteurs : démonstration mathématique
équation
racine : mathématique
suite mathématiqueMots-clés : résolution de problème Résumé : Dossier consacré à l'itération et à la récurrence en mathématiques. La définition des notions de récursivité et de récurrence, la construction de suites récurrentes (suites à récurrence double, suites à récurrence forte et factorisation), leur utilité pour la mise en place des méthodes de résolution d'équations et d'extraction d'une racine carrée. Les pièges à éviter et les étapes à suivre (initialisation et démonstration du caractère héréditaire de la propriété) en matière de raisonnement par récurrence. Les processus de récurrences linéaire et affine, la relation de récurrence linéaire ou affine dans le jeu des différences finies. Le Traité du triangle arithmétique de Blaise Pascal comme première explicitation du raisonnement par récurrence ; l'identité de la crosse de hockey ou de la chaussette de noël. L'algorithme de Héron d'Alexandrie pour déterminer la racine carrée d'un nombre positif ; le choix du premier terme du processus itératif dans la méthode de Héron. Des méthodes itératives au service de la résolution d'équations : la méthode par dichotomie, la méthode des tangentes (méthode de Newton ou méthode de Newton-Raphson), la méthode de la sécante ; la valeur approchée et la notion d'incertitude. Nature du document : documentaire Genre : / Article de périodique //Article de périodique [article] Processus itératifs et récurrence [texte imprimé] . - Archimède, 2020 . - p.13-30.
Bibliographie, schémas.
Langues : Français (fre)
in Tangente. Hors-série (Paris) > 076 (11/2020)
Descripteurs : démonstration mathématique
équation
racine : mathématique
suite mathématiqueMots-clés : résolution de problème Résumé : Dossier consacré à l'itération et à la récurrence en mathématiques. La définition des notions de récursivité et de récurrence, la construction de suites récurrentes (suites à récurrence double, suites à récurrence forte et factorisation), leur utilité pour la mise en place des méthodes de résolution d'équations et d'extraction d'une racine carrée. Les pièges à éviter et les étapes à suivre (initialisation et démonstration du caractère héréditaire de la propriété) en matière de raisonnement par récurrence. Les processus de récurrences linéaire et affine, la relation de récurrence linéaire ou affine dans le jeu des différences finies. Le Traité du triangle arithmétique de Blaise Pascal comme première explicitation du raisonnement par récurrence ; l'identité de la crosse de hockey ou de la chaussette de noël. L'algorithme de Héron d'Alexandrie pour déterminer la racine carrée d'un nombre positif ; le choix du premier terme du processus itératif dans la méthode de Héron. Des méthodes itératives au service de la résolution d'équations : la méthode par dichotomie, la méthode des tangentes (méthode de Newton ou méthode de Newton-Raphson), la méthode de la sécante ; la valeur approchée et la notion d'incertitude. Nature du document : documentaire Genre : / Article de périodique //Article de périodique Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 044021 Archives périodique Archives documentaire Disponible